Create Rounded Bar Charts in Tableau

Part 1: How to Make Rounded Bar Charts in Tableau

In this post you’re getting two videos for the price of one (considering they’re all free for now, that’s a good thing). I put together a relatively simple dashboard to help illustrate a few intermediate level concepts. In this first video I take a look at the number of total assists by NBA players during the 2017-2018 season. In case you were wondering, Russell Westbrook led the league in assists during that season. If you don’t know who Russell Westbrook is, then skip this Tableau stuff and watch the last video immediately (and then come back to the Tableau stuff).

In the first Tableau dashboard video, you’ll learn two concepts:

  • How to make rounded bar charts;
  • How to filter the number of bar chart marks via use of a parameter;

Part 2: Apply Custom Sorting in Tableau

In the second video I build upon the dashboard built in the first video by showing you how to add a custom sort. The custom sort relies upon the creation of a parameter and a calculated field. The parameter and calculated field enable the user to select either a dimension (e.g., Player Name) or a measure (e.g., sum of assists) from a drop down box and the visualization will sort ascending or descending as requested.

The calculated field relies upon the RANK_UNIQUE function.

In this context, RANK_UNIQUE returns the unique rank of each player’s assist total. The key with RANK_UNIQUE is that identical values are assigned different ranks. As an example, the set of values (6, 9, 9, 14) would be ranked (4, 2, 3, 1), as no tied rankings are allowed.

Part 3: Interact with the Dashboard

Bonus: Russell Westbrook on the Attack

For those of you who do not know who Russell Westbrook is, I’ve got you covered. These aren’t assists but in these situations, he didn’t need to pass!

References:

Thanks to both the Tableau Magic blog for outlining the concept of rounded bar charts and the VizJockey blog for the custom sort methodology. Check out and support these  blogs!

As always, do great things with your data!

If you find this type of instruction valuable make sure to subscribe to my Youtube channel.

Advertisements

The Ultimate Tableau Slope Graph Video

In this video I tackle the subject of slope graphs also known as slope charts. I had some fun putting together this dashboard that illustrates the changes in wins for NBA teams during the 2016-2017 and 2017-2018 seasons. From the video you’ll discover that Chicago, Atlanta and Memphis are on a Hindenburg-like trajectory, while trusting the process in Philadelphia led to huge season gains in overall wins.

Here’s what you will learn from this video:

  • How to create a parameter that enables a user to select which win statistic measure to visualize;
  • How to use Table calculations like, LOOKUP(), FIRST() and LAST() to calculate period over period change;
  • How the impact of Mike Conley’s injury affected the Memphis Grizzlies last season;

Click the pic to interact with the Tableau Public visualization, also download the workbook and data to dissect as needed.

For your convenience the calculated fields that I used to create the measures are listed here. Note that [Selected Measure] is a parameter that you need to create that lists all of the measures.

Calc Select Measure
CASE [Selected Measure]
WHEN “Home Losses” Then [Home Losses]
WHEN “Home Wins” Then [Home Wins]
WHEN “Overall Losses” Then [Overall Losses]
WHEN “Overall Wins” Then [Overall Wins]
WHEN “Road Losses” Then [Road Losses]
WHEN “Road Wins” Then [Road Wins]
WHEN “vs East Conf Losses” Then [vs East Conf Losses]
WHEN “vs East Conf Wins” Then [vs East Conf Wins]
WHEN “vs West Conf Losses” Then [vs West Conf Losses]
WHEN “vs West Conf Wins” Then [vs West Conf Wins]

END
Better or Worse
IF [Selected Measure] = “Home Wins” OR
[Selected Measure] = “Overall Wins” OR
[Selected Measure] = “Road Wins” OR
[Selected Measure] = “vs East Conf Wins” OR
[Selected Measure] = “vs West Conf Wins”
THEN
//WIN MEASURES: Negative delta treated as “WORSE”, Positive delta treated as “BETTER”
(IF [Delta] < 0 THEN “WORSE” ELSEIF [Delta] = 0 THEN “SAME” ELSE “BETTER” END)
ELSE
//LOSS MEASURES: Positive delta treated as “WORSE” (more losses are worse), Negative delta treated as “BETTER”
(IF [Delta] > 0 THEN “WORSE” ELSEIF [Delta] = 0 THEN “SAME” ELSE “BETTER” END)
END
Delta
LOOKUP(SUM([Calc Select Measure]),LAST()) – LOOKUP(SUM([Calc Select Measure]),FIRST())
Delta ABS Value
ABS(LOOKUP(SUM([Calc Select Measure]),LAST()) – LOOKUP(SUM([Calc Select Measure]),FIRST()))
ToolTip
<Team> Trend: <AGG(Better or Worse)> by <AGG(Delta ABS Value)>
During the <Season> Season, the <Team> had <SUM(Calc Select Measure)> <Parameters.Selected Measure>.

I have to give thanks to Ben Jones at the Data Remixed blog for the inspiration!

As always, If you find this type of instruction valuable make sure to subscribe to my Youtube channel.

Row and Column Highlighting in Tableau

In this post you’ll learn how to highlight values in your Tableau table using set actions. The dashboard in this video displays the number of total points scored by NBA teams by position in the 2017-2018 season. I will give you step by step instructions on how to implement row and column highlighting on this dataset downloaded from basketballreference.com.

I’ve only made a few minor tweaks but this technique was developed by Tableau Zen Master Matt Chambers. You can check out his blog at sirvizalot.com and follow him at Big shout out to Matt for sharing this technique with the Tableau community!

You can interact with my visualization on Tableau Public:

If you find this type of instruction valuable make sure to subscribe to my Youtube channel!

Tableau K-Means Clustering Analysis w/ NBA Data

Interact with this visualization on Tableau Public.

In this video we will explore the Tableau K-Means Clustering algorithm. K-Means Clustering is an effective way to segment your data points into groups when those data points have not explicitly been assigned to groups within your population. Analysts can use clustering to assign customers to different groups for marketing campaigns, or to group transaction items together in order to predict credit card fraud.

In this analysis, we’ll take a look at the NBA point guard and center positions. Our aim is to determine if Tableau’s clustering algorithm is smart enough to categorize these two distinct positions based upon a player’s number of assists and blocks per game.

Nicola Jokic is a Statistical Unicorn

If you also watch the following video you’ll understand why 6 ft. 11 center Nikola Jokic is mistakenly categorized as a point guard by the algorithm. This big man can drop some dimes!

If you’re interested in Business Intelligence & Tableau subscribe and check out my videos either here on this site or on my Youtube channel.