My Submission to the University of Illinois at Urbana-Champaign’s Data Visualization Class

I’m a huge fan of MOOCs (Massive Open Online Courses). I am always on the hunt for something new to learn to increase my knowledge and productivity; and because I run a blog, MOOCs provide fodder for me to share what I learn.

I recently took the Data Visualization class offered by the University of Illinois at Urbana-Champaign on Coursera. The class is offered as part of the Data Mining specialty of six courses that when taken together can lead to graduate credit in its online Master of Computer Science Degree in Data Science.

Ok enough with the brochure items. For the first assignment I constructed a visualization based upon temperature information from NASA’s Goddard Institute for Space Studies (GISS).

Data Definition:

In order to understand the data, you have to understand why temperature anomalies are used as opposed to raw absolute temperature measurements. It is important to note that the temperatures shown in my visualization are not absolute temperatures but rather temperature anomalies.

Basic Terminology

Here’s an explanation from NOAA:

“In climate change studies, temperature anomalies are more important than absolute temperature. A temperature anomaly is the difference from an average, or baseline, temperature. The baseline temperature is typically computed by averaging 30 or more years of temperature data. A positive anomaly indicates the observed temperature was warmer than the baseline, while a negative anomaly indicates the observed temperature was cooler than the baseline.”

Interpreting the Visualization

The course leaves it up to the learner to decide which visualization tool to use in order to display the temperature change information. Although I have experience with multiple visualization programs like Qlikview and Power BI, Tableau is my tool of choice. I didn’t just create a static visualization, I created an interactive dashboard that you can reference by clicking below.

From a data perspective, I believe the numbers in the file that the course provides is a bit different than the one I am linked to here but you can see the format of the data that needs to be pivoted in order to make an appropriate line graph.

All of the data in this set illustrates that temperature anomalies are increasing from the corresponding 1951-1980 mean temperatures as years progress. Every line graph of readings from meteorological stations shows an upward trend in temperature deviation readings. The distribution bins illustrate that the higher temperature deviations occur in more recent years. The recency of years is indicated by the intensity of the color red.

Let’s break down the visualization:

UIUC Top Portion

Top Section Distribution Charts:

  • There are three sub-sections representing global, northern hemisphere and southern hemisphere temperature deviations
  • The x axis represents temperature deviations in bins of 10 degrees
  • The y axis is a count of the number of years that fall between the binned temperature ranges
    • For example, if 10 years have a recorded temperature anomaly between 60 and 69 degrees, then the x axis would be 60 and the y axis would be 10

UIUC Distribution Focus.png

  • Each 10 degree bin is comprised of the various years that correspond to a respective temperature anomaly range
    • For example in the picture above, the year 1880 (as designated by the tooltip) had a temperature anomaly that was 19 degrees lower than the 30 year average. This is why the corresponding box for the year 1880 is not intensely colored.
    • Additionally, the -19 degree anomaly is located in the -10 degree bin (which contains anomalies from -10 to -19 degrees)
    • These aspects are more clearly illustrated when interacting with the Tableau Public dashboard
  • The intensity of the color of red indicates the recency of the year; for example year 1880 would be represented as white while year 2014 would be indicated by a deep red color

Bottom Section Line Graph Chart:

UIUC Bottom Portion

  • The y axis represents the temperature deviation from the corresponding 1951-1980 mean temperatures
  • Each line represents the temperature deviation at a specific geographic location during the 1880-2014 period
  • The x axis represents the year of the temperature reading

UIUC Gobal Average

In the above picture I strip out the majority of lines leaving only the global deviation line. Climate science deniers may want to look away as the data clearly shows that global temperatures are rising.

Bottom Line:

All in all I thought it was a decent class covering very theoretical issues regarding data visualization. Practicality is exclusively covered in the exercises as the class does not provide any instruction on how to use any of the tools required to complete the class. I understand the reason as this is not a “How to Use a Software Tool” class.

I’d define the exercises as “BYOE” (i.e., bring your own expertise). The class forces you to do your own research in regards to visualization tool instruction. This is especially true regarding the second exercise which requires you to learn how to visualize graphs and nodes. I had to learn how to use a program called Gephi in order to produce a network map of the cities in my favorite board game named Pandemic. The lines between the city nodes are the paths that one can travel within the game.

UIUC Data Viz Week 3

If you’re looking for more practicality and data visualization best practices as opposed to hardcore computer science topics take a look at the Coursera specialization from UC Davis called “Visualization with Tableau”.

In case you were wondering I received at 96% grade in the UIUC course.

My final rating for the class is 3 stars out 5; worth a look.

Advertisements

Tableau Sales Dashboard Performance

The following is a guest post contributed by Perceptive Analytics.

Business heads often use KPI tracking dashboards that provide a quick overview of their company’s performance and well-being. A KPI tracking dashboard collects, groups, organizes and visualizes the company’s important metrics either in a horizontal or vertical manner. The dashboard provides a quick overview of business performance and expected growth.

An effective and visually engaging way of presenting the main figures in a dashboard is to build a KPI belt by combining text, visual cues and icons. By using KPI dashboards, organizations can access their success indicators in real time and make better informed decisions that support long-term goals.

What is a KPI?

KPIs (i.e. Key Performance Indicators) are also known as performance metrics, performance ratios or business indicators. A Key Performance Indicator is a measurable value that demonstrates how effectively a company is achieving key business objectives.

A sales tracking dashboard provides a complete visual overview of the company’s sales performance by year, quarter or month. Additional information such as the number of new leads and the value of deals can also be incorporated.

Example of KPIs on a Sales Dashboard:

  • Number of New Customers and Leads
  • Churn Rate (i.e. how many people stop using the product or service)
  • Revenue Growth Rate
  • Comparison to Previous Periods
  • Most Recent Transactions
  • QTD (quarter to date) Sales
  • Profit Rate
  • State Wise Performance
  • Average Revenue for Each Customer

Bringing It All Together with Dashboards and Stories

An essential element of Tableau’s value is delivered via dashboards. Well-designed dashboards are visually engaging and draw in the user to play with the information. Dashboards can facilitate details-on-demand that enable the information consumer to understand what, who, when, where, how and perhaps even why something has changed.

Best Practices to Create a Simple and Effective Dashboard to Observe Sales Performance KPIs

A well-framed KPI dashboard instantly highlights problem areas. The greatest value of a modern business dashboard lies in its ability to provide real-time information about a company’s sales performance. As a result, business leaders, as well as project teams, are able to make informed and goal-oriented decisions, acting on actual data instead of gut feelings. The choice of chart types on a dashboard should highlight KPIs effectively.

Bad Practices Examples in a Sales Dashboard:

  • A sales report displaying 12 months of history for twenty products; 12 × 20 = 240 data points.
    • Multiple data points do not enable the information consumer to effectively discern trends and outliers as easily as a time-series chart comprised of the same information
  • The quality of the data won’t matter if the dashboard takes five minutes to load
  • The dashboard fails to convey important information quickly
  • The pie chart has too many slices, and performing precise comparisons of each product sub-category is difficult
  • The cross-tab at the bottom requires that the user scroll to see all the data

Now, we will focus on the best practices to create an effective dashboard to convey the most important sales information. Tableau is designed to supply the appropriate graphics and chart types by default via the “Show me” option.

I. Choose the Right Chart Types

With respect to sales performance, we can use the following charts to show the avg. sales, profits, losses and other measures.

  • Bar charts to compare numerical data across categories to show sales quantity, sales expense, sales revenue, top products and sales channel etc. This chart represents sales by region.

1

  • Line charts to illustrate sales or revenue trends in data over a period of time:

2

  • A Highlight table allows us to apply conditional formatting (a color scheme in either a continuous or stepped array of colors from highest to lowest) to a view.

3

  • Use Scatter plots or scatter graphs to investigate the relationship between different variables or to observe outliers in data. Example: sales vs profit:

4

  • Use Histograms to see the data distribution across groups or to display the shape of the sales distribution:

5

Advanced Chart Types:

  • Use Bullet graphs to track progress against a goal, a historical sales performance or other pre-assigned thresholds:

6

  • The Dual-line chart (or dual-axis chart), is an extension of the line chart and allows for more than one measure to be represented with two different axis ranges. Example: revenue vs. expense
  • The Pareto chart is the most important chart in a sales analysis. The Pareto principle is also known as 80-20 rule; i.e roughly 80% of the effects come from 20% of the causes.

7

When performing a sales analysis, this rule is used for detecting the 80% of total sales derived from 20% of the products.

  • Use Box plots to display the distribution of data through their quartiles and to observe the major data outliers

8

Tableau Sales Dashboard

Here is a Tableau dashboard comprised of the aforementioned charts. This interactive dashboard enables the consumer to understand sales information by trend, region, profit and top products.

9

II. Use Actions to filter instead of Quick Filters

Using actions in place of Quick Filters provides a number of benefits. First, the dashboard will load more quickly. Using too many Quick Filters or trying to filter a very large dimension set can slow the load time because Tableau must scan the data to build the filters. The more quick filters enabled on the dashboard, the longer it will take the dashboard to load.

III. Build Cascading Dashboard Designs to Improve Load Speed

By creating a series of four-panel, four cascading dashboards the load speed was improved dramatically and the understandability of the information presented was greatly enhanced. The top-level dashboard provided a summary view, but included filter actions in each of the visualizations that allowed the executive to see data for different regions, products, and sales teams.

IV. Remove All Non-Data-Ink

Remove any text, lines, or shading that doesn’t provide actionable information. Remove redundant facts. Eliminate anything that doesn’t help the audience understand the story contained in the data.

V. Create More Descriptive Titles for Each Data Pane

Adding more descriptive data object titles will make it easier for the audience to interpret the dashboard. For example:

  • Bullet Graph—Sales vs. Budget by Product
  • Sparkline—Sales Trend
  • Cross-tab—Summary by Product Type
  • Scatter Plot—Sales vs. Marketing Expense

VI. Ensure That Each Worksheet Object Fits Its Entire View

When possible, change the graphs fit from “Normal” to “Entire View” so that all data can be displayed at once.

VII. Adding Dynamic Title Content

There is an option to use dynamic content and titles within Tableau. Titles can be customized in a dynamic way so that when a filter option is selected, the title and content will change to reflect the selected value. A dynamic title expresses the current content. For example: if the dashboard title is “Sales 2013” and the user has selected year 2014 from the filter, the title will update to “Sales 2014”.

VIII. Trend Lines and Reference Lines

Visualizing granular data sometimes results in random-looking plots. Trend lines help users interpret data by fitting a straight or curved line that best represents the pattern contained within detailed data plots. Reference lines help to compare the actual plot against targets or to create statistical analyses of the deviation contained in the plot; or the range of values based on fixed or calculated numbers.

IX. Using Maps to Improve Insight

Seeing the data displayed on a map can provide new insights. If an internet connection is not available, Tableau allows a change to locally-rendered offline maps. If the data includes geographic information, we can very easily create a map visualization.

10

This map represents sales by state. The red color represents negative numbers and the green color represents positive numbers.

X. Developing an Ad Hoc Analysis Environment

Tableau facilitates ad hoc analysis in three ways:

  1. Generating new data with forecasts
  2. Designing flexible views using parameters
  3. Changing or creating designs in Tableau Server

XI. Using Filters Wisely

Filters generally improve performance in Tableau. For example, when using a dimension filter to view only the West region, a query is passed to the underlying data source, resulting in information returned for only that region. We can see the sales performance of the particular region in the dashboard. By reducing the amount of data returned, performance improves.

Enhance Visualizations Using Colors, Labels etc.

I. Using colors:

Color is a vital way of understanding and categorizing what we see. We can use color to tell a story about the data, to categorize, to order and to display quantity. Color helps with distinguishing the dimensions. Bright colors pop at us, and light colors recede into the background. We can use color to focus attention on the most relevant parts of the data visualization. We choose color to highlight some elements over others, and use it to convey a message.

Red is used to denote smaller values, and blue or green is used to denote higher values. Red is often seen as a warning color to show the loss or any negative number whereas blue or green is seen as a positive result to show profit and other positive values.

Without colors:

11

With colors:

12

II. Using Labels:

Enable labels to call out marks of interest and to make the view more understandable. Data labels enable comprehension of exact data point values. In Tableau, we can turn on mark labels for marks, selected marks, highlighted marks, minimum and maximum values, or only the line ends.

Without labels:

13

With labels:

14Using Tableau to enhance KPI values

The user-friendly interface allows non-technical users to quickly and easily create customized dashboards. Tableau can connect to nearly any data repository, from MS Excel to Hadoop clusters. As mentioned above, using colors and labels, we can enhance visualization and enhance KPI values. Here are some additional ways by which we can enhance the values especially with Tableau features.

I. Allow for Interactivity

Playing, exploring, and experimenting with the charts is what keeps users engaged. Interactive dashboards enable the audiences to perform basic analytical tasks such as filtering views, drilling down and examining underlying data – all with little training.

II. Custom Shapes to Show KPIs

Tableau shapes and controls can be found in the marks card to the right of the visualization window. There are plenty of options built into Tableau that can be found in the shape palette.

15

Custom shapes are very powerful when telling a story with visualizations in dashboards and reports. We can create unlimited shape combinations to show mark points and create custom formatting. Below is an example that illustrates how we can represent the sales or profit values with a symbolic presentation.

16

Here green arrows indicate good sales progress and red arrows indicate a fall in Year over Year Sales by Category

III. Creating Calculated Fields

Calculated fields can be used to create new dimensions such as segments, or new measures such as ratios. There are many reasons to create calculated fields in Tableau. Here are just a few:

  1. Segmentation of data in new ways on the fly
  2. Adding a new dimension or a new measure before making it a permanent field in the underlying data
  3. Filtering out unwanted results for better analyses
  4. Using the power of parameters, putting the choice in the hands of end users
  5. Calculating ratios across many different variables in Tableau, saving valuable database processing and storage resources

IV. Data-Driven Alerts

With version 10.3, Tableau has introduced a very useful feature: Data-Driven Alerts. We may want to use alerts to notify users or to remind that a certain filter is on and want to be alerted somehow if performance is ever higher or lower than expected. Adding alerts to dashboards can help elicit necessary action by the information consumer. This is an example of a data driven alert that we can set while displaying a dashboard or worksheet.

17

In a Tableau Server dashboard, we can set up automatic mail notifications to a set of recipients when a certain value reaches a specific threshold.

Summary

For an enterprise, a dashboard is a visual tool to help track, monitor and analyze information about the organization. The aim is to enable better decision making.

A key feature of sales dashboards in Tableau is interactivity. Dashboards are not simply a set of reports on a page; they should tell a story about the business. In order to facilitate the decision-making process, interactivity is an important part of assisting the decision-maker to get to the heart of the analysis as quickly as possible.

Author Bio:

This article was contributed by Perceptive Analytics. Neeru Gupta, Chaitanya Sagar, Prudhvi Sai Ram and Saneesh Veetil contributed to this article.

Perceptive Analytics provides data analytics, data visualization, business intelligence and reporting services to e-commerce, retail, healthcare and pharmaceutical industries. Our client roster includes Fortune 500 and NYSE listed companies in the USA and India.

Add a “Filters in Use” Alert to Your Tableau Dashboard

In this video we will learn to add a “Filters in Use Alert” to a Tableau Dashboard. If you have a dashboard with multiple filters, apply this quick and easy tip to inform your users that filters are in play. This tip builds upon the dashboard that I showcased recently in a previous post: Add a Reset All Filters Button to Your Tableau Dashboard.

I learned this current tip from a presentation given by Tableau Zen Master Ryan Sleeper, so I have to give credit where credit is due.

If you’re interested in Business Intelligence & Tableau subscribe and check out my videos either here on this site or on my Youtube channel.

Tableau for Marketing: Become a Segmentation Sniper

This article is a guest post contributed by Perceptive Analytics.

Did you know that Netflix has over 76,000 genres to categorize its movie and tv show database? I am sure this must be as shocking to you as this was to me when I read about it first. Genres, rather micro-genres, could be as granular as “Asian_English_Mother-Son-Love_1980.” This is the level of granularity to which Netflix has segmented its product offerings, which is movies and shows.

But do you think is it necessary to go to this level to segment the offerings?

I think the success of Netflix answers this question on its own. Netflix is considered to have one of the best recommendation engines. They even hosted a competition on Kaggle and offered a prize money of USD 1 million to the team beating their recommendation algorithm. This shows the sophistication and advanced capabilities developed by the company on its platform. This recommendation tool is nothing but a segmentation exercise to map the movies and users. Sounds easy, right?

Gone are the days when marketers used to identify their target customers based on their intuition and gut feelings. With the advent of big data tools and technologies, marketers are relying more and more on analytics software to identify the right customer with minimal spend. This is where segmentation comes into play and makes our lives easier. So, let’s first understand what is segmentation? and why do we need segmentation?

Segmentation, in very simple terms, is grouping of customers in such a way that that customers falling into one segment have similar traits and attributes. The attributes could be in terms of their likings, preference, demographic features or socio-economic behavior. Segmentation is mainly talked with respect to customers, but it can refer to products as well. We will explore few examples as we move ahead in the article.

With tighter marketing budgets, increasing consumer awareness, rising competition, easy availability of alternatives and substitutes, it is imperative to use marketing budgets to prudently to target the right customers, through the right channel, at the right time and offer them the right set of products. Let’s look at an example and understand why segmentation is important for marketers.

There is an e-commerce company which is launching a new service for a specific segment of customers who shop frequently and whose ticket size is also high. For this, the company wants to see which all customers to target for the service. Let’s first look at the data at an aggregate level and then further drill down to understand in detail. There are 5 customers for whom we want to evaluate the spend. The overall scenario is as follows:

Chart1

Should the e-commerce company offer the service to all the five customers?

Who is the right customer to target for this service? Or which is the right customer segment to target?

We will see the details of each of the customers and see the distribution of data.

2

Looking at the data above, it looks like Customer 1 and Customer 2 would be the right target customers for company’s offering. If we were to segment these 5 customers into two segments, then Customer 1 and Customer 2 would fall in one segment because they have higher total spend and higher number of purchases than the other three customers. We can use Tableau to create clusters and verify our hypothesis. Using Tableau to create customer segments, the output would look like as below.

3

Customer 1 and customer 2 are part of cluster 1; while customer 3, customer 4 and customer 5 are part of cluster 2. So, the ecommerce company should focus on all the customers falling into cluster 1 for its service offering.

Let’s take another example and understand the concept further.

We will try to segment the countries in the world by their inbound tourism industry (using the sample dataset available in Tableau). Creating four segments we get the following output:

4

There are few countries which do not fall into any of the clusters because data for those countries is not available. Looking at clusters closely, we see that the United States of America falls in the cluster 4; while India, Russia, Canada, Australia, among others fall in the cluster 2. Countries in the Africa and South America fall in the cluster 1; while the remaining countries fall in the cluster 3. Thus, it makes it easier for us to segment countries based on certain macro-economic (or other) parameters and develop a similar strategy for countries in the same cluster.

Now, let’s go a step further and understand how Tableau can help us in segmentation.

Segmentation and Clustering in Tableau

Tableau is one of the most advanced visualization and business intelligence tool available in the market today. It provides a lot of interactive and user-friendly visualizations and can handle large amounts of data. It can handle millions of rows at once and provides connection support to almost all the major databases in the market.

With the launch of Tableau 10 in 2016, the company offered a new feature of clustering. Clustering was once considered a technique to be used only by statisticians and advanced data scientists, but with this new feature in Tableau it becomes as easy as simple drag and drop. This feature can provide a big support to marketers in segmenting their customers and products, and get better insights.

Steps to Becoming a Segmentation Sniper

Large number of sales channels, increase in product options and rise in advertisement cost has made it inevitable not only for marketers but for almost all the departments to analyze customer data and understand their behavior to maintain market position. We will now take a small example and analyze the data using Tableau to understand our customer base and zero-in on the target customer segment.

There is a market research done by a publishing company which is mainly into selling of business books. They want to further expand their product offerings to philosophy books, marketing, fiction and biographies. Their objective is to use customer responses and find out which age group like which category of books the most.

For an effective segmentation exercise, one should follow the below four steps.

  1. Understand the objective
  2. Identify the right data sources
  3. Creating segments and micro-segments
  4. Reiterate and refine

We will now understand each of the steps and use Tableau, along with, to see the findings at every step.

  1. Understand the objective

Understanding the objective is the most important thing that you should do before starting the segmentation exercise. Having a clear objective is the most imperative thing because it will help you channelize your efforts towards the objective and prevent you from just spending endless hours in plain slicing and dicing. In our publishing company example, the objective is to find out the target age group which the company should focus on in each of the segments, namely philosophy, marketing, fiction and biography. This will help the publishing company in targeting its marketing campaign to specific set of customers for each of the genres. Also, it will help the company in identifying the target age group that like both business and philosophy or business and marketing, or similar other groups.

  1. Identify the right data sources

In this digital age, data is spread across multiple platforms. Not using the right data sources could prove to be as disastrous as not using analytics at all. Customer data residing in CRM systems, operational data in SAP systems, demographic data, macro-economic data, financial data, social media footprint – there could be endless list of data sources which could prove to be useful in achieving our objective. Identifying right variables from each of the sources and then integrating them to form a data lake forms the basis of further analysis.

In our example, dataset is not as complex as it might be in real life scenarios. We are using a market survey data gathered by a publishing company. The data captures the age of customer and their liking/disliking for different genres of books, namely philosophy, marketing, fiction, business and biography.

  1. Creating segments and micro-segments

At this stage, we have our base data ready in the analyzable format. We will start analyzing data and try to form segments. Generally, you should start by exploring relationships in the data that you are already aware of. Once you establish few relationships among different variables, keep on adding different layers to make it more granular and specific.

We will start by doing some exploratory analysis and then move on to add further layers. Let’s first see the results of the market survey at an aggregate level.

5

From the above analysis, it looks like fiction is the most preferred genre of books among the respondents. But before making any conclusions, let’s explore a little further and move closer to our objective.

If we split the results by age group and then analyze, results will look something like the below graph.

6

In the above graph, we get further clarity on the genre preferences by respondents. It gives us a good idea as to which age group prefers which genre. Fiction is most preferred by people under the age of 20; while for other age groups fiction is not among the top preference. If we had only taken the average score and went ahead with that, we would have got skewed results. Philosophy is preferred by people above the age of 40; while others prefer business books.

Now moving a step ahead, for each of the genre we want to find out the target age group.

7

The above graph gives us the target group for each of the genres. For biography and philosophy genres, people above the age of 40 are the right customers; while for business and marketing, age group 20-30 years should be the target segment. For fiction, customers under the age of 20 are the right target group.

Reiterate and refine

 In the previous section, we created different customer segments and identified the target segment for publishing company. Now, let’s say we need to move one more step ahead and identify only those age groups and genres which have overlap with business genres. To put it the other way, if the publishing company was to target only one new genre (remember, they already have customer base for business books) and one age group, which one should it be?

Using Tableau to develop a relation amongst the different variables, our chart should look like the one below.

8

Starting with the biography genre, age group 30-40 years comes closest to our objective, i.e., people in this age group like both biography and business genre (Biography score – 0.22, Business score – 0.31). Since, we have to find only one genre we will further explore the relationships.

For fiction, there is no clear overall with any of the age groups. For marketing, age group 20-30 year looks to be clear winner. The scores for the groups are – marketing – 0.32, business – 0.34. The relation between philosophy and business is not as strong as it is for business and marketing.

To sum it up, if the publishing company was to launch one more genre of books then it should be marketing and target customer group should be in the range of 20-30 years.

Such analysis can be refined further depending on the data we have. We can add gender, location, educational degree, etc. to the analysis and further refine our target segment to make our marketing efforts more focused.

I think after going through the examples in the article, you can truly appreciate the level of segmentation that Netflix has done and it clearly reflects the reason behind its success.

Author Bio:

This article was contributed by Perceptive Analytics. Vishal Bagla, Chaitanya Sagar, Saurabh Sood and Saneesh Veetil contributed to this article.

Perceptive Analytics provides data analytics, business intelligence and reporting services to e-commerce, retail, healthcare and pharmaceutical industries. Our client roster includes Fortune 500 and NYSE listed companies in the USA and India.

 

 

Add Totals to Stacked Bar Charts in Tableau

 

In this video I demonstrate a couple of methods that will display the total values of your stacked bar charts in Tableau. The first method deals with a dual axis approach while the second method involves individual cell reference lines. Both approaches accomplish the same objective. Hope you enjoy this tip!

If you’re interested in Business Intelligence & Tableau subscribe and check out my videos either here on this site or on my Youtube channel.

Tableau K-Means Clustering Analysis w/ NBA Data

Interact with this visualization on Tableau Public.

In this video we will explore the Tableau K-Means Clustering algorithm. K-Means Clustering is an effective way to segment your data points into groups when those data points have not explicitly been assigned to groups within your population. Analysts can use clustering to assign customers to different groups for marketing campaigns, or to group transaction items together in order to predict credit card fraud.

In this analysis, we’ll take a look at the NBA point guard and center positions. Our aim is to determine if Tableau’s clustering algorithm is smart enough to categorize these two distinct positions based upon a player’s number of assists and blocks per game.

Nicola Jokic is a Statistical Unicorn

If you also watch the following video you’ll understand why 6 ft. 11 center Nikola Jokic is mistakenly categorized as a point guard by the algorithm. This big man can drop some dimes!

If you’re interested in Business Intelligence & Tableau subscribe and check out my videos either here on this site or on my Youtube channel.

Ranking Banks by Number of Complaints

I recently downloaded a dataset from the Consumer Finance Protection Bureau (CFPB) in order to construct a handy visualization. The CFPB maintains a database that houses a collection of complaints on a range of consumer financial products and services that are sent to companies for a response.

Per the CFPB, “the database also includes information about the actions taken by the company in response to the complaint, such as, whether the company’s response was timely and how the company responded.”

Although the database is updated daily, I chose to visualize information from the complete year of 2017. In fairness to the financial institutions, company level information should be considered in context of company size and/or market share.

Financial institutions analyze this information frequently as a way of understanding and continuously improving their customer service.

I highly recommend “The Big Book of Dashboards” by Jeffrey Shaffer, Andy Cotgreave and Steve Wexler. The book contains a number of visualization examples that provide guidance on dashboard creation for any number of business use cases. In this Tableau Public dashboard I relied heavily on the visual guidance for their Complaints Dashboard as you can observe.

Screen Shot 2018-06-03 at 10.02.14 PM

Complaints Dashboard from “The Big Book of Dashboards”

Click on the picture link to view the dashboard on Tableau Public (not optimized for mobile).

Dashboard 1

If you’re interested in Business Intelligence & Tableau subscribe and check out my videos either here on this site or on my Youtube channel.